

Mario Negri Institute, Milan, Italy - March 10-11, 2009

Frank Lemke

KnowledgeMiner Software

Enhancing CAESAR Models

http://www.caesar-project.eu/

High Value Properties of CAESAR Models

- High quality of data
- Out-of-sample validation of models
- Reproducibility
- Transparency
- Application domain
- Ready- and Easy-to-use

WORKSHOP on QSAR MODELS FOR REACH Mario Negri Institute, Milan, Italy - March 10-11, 2009

Visions for CAESAR Models

Implementation of

Hybrid models from existing models

Prediction interval and uncertainty

Optimisation according to FN and FP costs

WORKSHOP ON QSAR MODELS FOR REACH Mario Negri Institute, Milan, Italy - March 10-11, 2009

Hybrid QSAR Models: Motivation

- On noisy, uncertain data sets a number of models can be built, which are comparable with respect to prediction accuracy. (in CAESAR: ≈ 25 / endpoint)
- Commonly, a model is a simplified reflection of the complex reality, only. It describes a specific part of the object's behavior.

So why only use one model?

Hybrid QSAR Models: Motivation

- A more complete reflection of the reality can be obtained when combining several models:
 - Different modeling approaches
 - Different input data
 - Different parameters
- Increased prediction accuracy of up to about 10% is possible.

Hybrid QSAR Models: Principle

Optimal composition of a number of individual models into one combined model

6

WORKSHOP ON QSAR MODELS FOR REACH

Visions for CAESAR Models

Implementation of

Hybrid models from existing models

Prediction interval and uncertainty

Optimisation according to FN and FP costs

WORKSHOP ON QSAR MODELS FOR REACH

Prediction: Commonly

Prediction Interval

Per compound prediction uncertainty available for decision-making Freedom of choice

*) the values shown do not necessarily correspond to the final model for developmental toxicity.

Prediction Interval

Uncertainty is huge for experimental data, already. We cannot expect QSAR models built on this data being less uncertain than the original information is.

*) the values shown do not necessarily correspond to the final model for developmental toxicity.

FOR REACH Martin Negri Institute, Milan, Italy - March 10-11, 2009

WORKSHOP on QSAR MODELS

Visions for CAESAR Models

Implementation of

Hybrid models from existing models

Prediction interval and uncertainty

Optimisation according to FN and FP costs

WORKSHOP ON QSAR MODELS FOR REACH

Classification: Current Praxis

Given: Data set of experimental values about carcinogenicity (the "Truth") 100 compounds are carcinogenic (Positive) 100 compounds are not carcinogenic (Negative)

	Balanced classifier				
Confusion Matrix	Truth: Positive	Truth: Negative		Accuracy	74,5 %
Predicted: Positive	74	25	\rightarrow	Sensitivity	74 %
Predicted: Negative	26	75		Specificity	75 %

Balanced sensitivity and specificity

What if there are *different costs* for misclassified compounds (FP/FN) and/or *different benefits* for correctly classified compounds (TP/TN)? —> Real-world scenario

High relative False Negative costs				Balanced classifier			
Cost-Benefit Matrix	Truth: Positive	Truth: Negative		Confusior Matrix	n	Truth: Positive	Truth: Negative
Predicted: Positive	0	1	&	Predicte Positive	d: e	74	25
Predicted: Negative	9	-3		Predicte Negativ	d: e	26	75
	Cost/com ound	p 0,09	P	Relative cost		3,2%	
WORKSHOP or QSAR MODELS	5						13

Using a *cost-sensitive approach* to find the **optimal classifier** for cost-benefit matrix: False Negative Optimisation

High relative False Negative costs				False Negative optimised classifier			
Cost-Benefit Matrix	Truth: Positive	Truth: Negative		Confusion Matrix	n	Truth: Positive	Truth: Negative
Predicted: Positive	0	1	&	Predicte Positive	d: e	89	42
Predicted: Negative	9	-3		Predicte Negativ	d: e	11	58
	Benefit/c mpound	0 ,22		Relative benefit		11,8%	
WORKSHOP on QSAR MODEL FOR REACH	S						(14)

How does the balanced classifier perform in the inverse situation? False Positive Optimisation

High relative False Positive costs				Balanced classifier				
Cost-Benefit Matrix	Truth: Positive	Truth: Negative		Confusion Matrix	n	Truth: Positive	Truth: Negative	
Predicted: Positive	-3	9	&	Predicte Positive	d: e	74	25	
Predicted: Negative	1	0		Predicte Negativ	d: ′e	26	75	
	Cost/com ound	p 0,14		Relative cost		5,6%		
WORKSHOP on QSAR MODEL FOR REACH	S						15	

- AND

Cost-sensitive Models

Using a *cost-sensitive approach* to find the **optimal classifier** for cost-benefit matrix: False Positive Optimisation

High relative False Positive costs				False Positive optimised classifier			
Cost-Benefit Matrix	Truth: Positive	Truth: Negative		Confusion Matrix	n	Truth: Positive	Truth: Negative
Predicted: Positive	-3	9	&	Predicte Positive	d: e	70	21
Predicted: Negative	1	0		Predicte Negativ	d: 'e	30	79
	Benefit/c mpound	0 ,02		Relative benefit		1,8%	
WORKSHOP ON QSAR MODEL FOR REACH	S						(16)

One Example QSAR Model					
Summary Benefits	Balanced Classifier	Optimised Classifier			
FN Minimisation	-3,2 %	11,8 %			
FP Minimisation	-5,6 %	1,8 %			
Balanced	24,1 %	24,1 %			

Values in one column are not comparable since based on different cost-benefit matrices.

WORKSHOP ON QSAR MODELS FOR REACH Mario Negri Institute, Milan, Italy - March 10-11, 2009

- Apparently, there is an optimal classifier for given cost-benefit matrix and model; balanced classifier optimal only for balanced costs/benefits
- Objective accuracy- and cost-driven optimisation of FP or FN
- Live optimisation according to given costs by the user at runtime

Visions: Summary

Hybrid Models	 More complete reflection of the complexity of the problem Increasing prediction accuracy
Prediction Interval	 Per-compound prediction uncertainty available Freedom-of-choice for decision making Individual selection of prediction value based on purpose
Cost-sensitive Models	 Live, objective accuracy- and cost-driven optimisation of a model for minimising FN or FP Finally, the purpose of a QSAR prediction, the evaluation task it is used for, is driving the model result Dealing with uncertainty of results

