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High Value Properties of
CAESAR Models

* High quality of data

e Qut-of-sample validation of models
* Reproducibility

* Transparency

* Application domain

 Ready- and Easy-to-use
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Visions for CAESAR Models

Implementation of

Hybrid models from existing models

Optimisation according to FN and FP costs
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Hybrid QSAR Models: Motivation

* On noisy, uncertain data sets a number of models
can be built, which are comparable with respect to
prediction accuracy. (in CAESAR: = 25 / endpoint)

e Commonly, a model is a simplified reflection of the
complex reality, only. It describes a specific part of
the object’s behavior.

So why only use one model?
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Hybrid QSAR Models: Motivation

* A more complete reflection of the reality can be
obtained when combining several models:
— Different modeling approaches
— Different input data
— Different parameters

* Increased prediction accuracy of up to about 10% is
possible.
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Hybrid QSAR Models: Principle
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Optimal composition of a number of individual models into one combined model
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Visions for CAESAR Models

Implementation of
Hybrid models from existing models

Prediction interval and uncertainty

Optimisation according to FN and FP costs
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Reprotoxicity for Acetohexamide Reprotoxicity for Acid(isotretinoin) Reprotoxicity for Cimetidine
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O Predicted

@ Experienced
O Predicted

@ Experienced
O Predicted

Reprotoxicity
Reprotoxicity

Reprotoxicity

Regression models
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Predicti Int |
Reprotoxicity for Acetohexamide Reprotoxicity for Acid(isotretinoin) Reprotoxicity for Cimetidine

reprotoxic
reprotoxic
reprotoxic

@ Experienced @ Experienced @ Experienced

O Predicted Most O Predicted Most O Predicted Most

Classification and
regression models

Likely Likely Likely
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Per compound prediction uncertainty available for decision-making
Freedom of choice
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Prediction Int |
Reprotoxicity for Ephedrine Reprotoxicity for Folic Acid Reprotoxicity for Warfarin

@ Experienced @ Experienced
O Predicted Most O Predicted Most
Likely Likely
-0,27
-0,49

Uncertainty is huge for experimental data, already.
We cannot expect QSAR models built on this data being less uncertain
than the original information is.
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Classification and
regression models

non-reprotoxic

non-reprotoxic
non-reprotoxic
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Visions for CAESAR Models

Optimisation according to FN and FP costs

Implementation of
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Classification: Current Praxis

Given: Data set of experimental values about carcinogenicity (the ,Truth®)
100 compounds are carcinogenic (Positive)
100 compounds are not carcinogenic (Negative)

Balanced classifier

Gt Truth: Truth:

Matrix Positive Negative Accuracy

Predicted:

Positive Sensitivity

Predicted:
Negative

Specificity

Balanced sensitivity and specificity
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Cost-sensitive Models

What if there are different costs for misclassified compounds (FP/FN) and/or different
benefits for correctly classified compounds (TP/TN)? Real-world scenario

High relative False Negative costs Balanced classifier

Cost-Benefit Truth: Truth: GOt an Truth: Truth:
Matrix Positive Negative Matrix Positive Negative

Predicted:
Positive

Predicted:
Positive

Predicted:
Negative

Predicted:
Negative

“
ound cost
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Cost-sensitive Models

Using a cost-sensitive approach to find the optimal classifier for cost-benefit matrix:
False Negative Optimisation

High relative False Negative costs False Negative optimised classifier

Matrix Positive Negative Matrix Positive Negative

Predicted:
Positive

Predicted:
Positive

Predicted:
Negative

Predicted:
Negative

Benefit/co
mpound

Relative
benefit
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Cost-sensitive Models

How does the balanced classifier perform in the inverse situation?
False Positive Optimisation

High relative False Positive costs Balanced classifier

Cost-Benefit Truth: Truth: GOt an Truth: Truth:
Matrix Positive Negative Matrix Positive Negative

Predicted:
Positive

Predicted:
Negative
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Cost-sensitive Models

Using a cost-sensitive approach to find the optimal classifier for cost-benefit matrix:
False Positive Optimisation

High relative False Positive costs False Positive optimised classifier

Matrix Positive Negative Matrix Positive Negative

Predicted:
Positive

Predicted:
Positive

Predicted:
Negative

Predicted:
Negative

Benefit/co
mpound

Relative
benefit
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Cost-sensitive Models

One Example QSAR Model

Summary Balanced Optimised
Benefits Classifier Classifier

FN

Minimisation e LIRS 2

FP

Minimisation 8 L

Balanced 24,1 % 24,1 %

Values in one column are not comparable
since based on different cost-benefit matrices.
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Cost-sensitive Models

* Apparently, there is an optimal classifier for given
cost-benefit matrix and model; balanced classifier
optimal only for balanced costs/benefits

* Objective accuracy- and cost-driven optimisation of
FP or FN

* Live optimisation according to given costs by the
user at runtime
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Hybrid Models

Prediction
Interval

Cost-sensitive
Models
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Visions: Summary

* More complete reflection of the complexity of the problem
* Increasing prediction accuracy

* Live, objective accuracy- and cost-driven optimisation of a model
for minimising FN or FP

* Finally, the purpose of a QSAR prediction, the evaluation task it is
used for, is driving the model result

* Dealing with uncertainty of results



