The Local Models for Skin Sensitisation and Developmental Toxicity

Steve Enoch School of Pharmacy and Chemistry Liverpool John Moores University

What is a Chemical Category?

'Group of chemicals whose physicochemical and toxicological properties are likely to be similar or follow a regular pattern as a result of structural similarity, these structural similarities may create a predictable pattern in any or all of the following parameters: physicochemical properties, environmental fate and environmental effects, and human health effects'¹

Category Formation and Read-Across

 Toxic mechanisms of action define categories

 Chemical similarity can be used to group chemicals into categories

Quantitative and qualitative read-across

Skin Sensitisation

Electrophilic Reaction Chemistry

- Six key chemical reactions have been defined for protein reactivity²
- All known skin sensitising chemicals can be assigned to one of these mechanisms
- Five of these mechanisms are well defined in the literature
- SMARTS based rules have been developed³

²Aptula and Roberts (2006) Chem Res Toxicol 19; 1097-1105 ³Enoch et al (2008) SAR QSAR Environ Sci 19; 555-578

SMARTS Rules

	Acylation	Michael	Schiff base	S _N 2	S _N Ar	S _N 1	Non
Acylation	24		1	1			
Michael		44					2
Schiff base			40				3
S _N 2	2	2		47			
S _N Ar					3		
S _N 1							1
Non							22

SMARTS Rules

	Acylation	Michael	Schiff base	S _N 2	S _N Ar	S _N 1	Non
Acylation	24		1	1			
Michael		44					2
Schiff base			40				3
S _N 2	2	2		47			
S _N Ar					3		
S _N 1							1
Non							22

SMARTS Rules

	Acylation	Michael	Schiff base	S _N 2	S _N Ar	S _N 1	Non
Acylation	24		1	1			
Michael		44					2
Schiff base			40				3
S _N 2	2	2		47			
S _N Ar					3		
S _N 1							1
Non							22

Mechanism of Michael-Type Addition

X = electron withdrawing substituent e.g. CO, CHO, NO₂, CO₂R.

Mechanistic Category Formation

Quantitative Read-Across

Methodology

Use the electrophilicity index (ω) to model protein reactivity within a category

 Electrophilic index calculated from HOMO and LUMO using DFT

• Model the skin sensitising potential of 22 α , β -unsaturated alkenes⁴

⁴Enoch et al (2008) Chem Res Toxicol 21; 513-520

Quantitative Electrophilicity (ω) Ranking

pEC3 = NC, ω = 1.10 pEC3 = 0.55, ω = 1.49 pEC3 = 1.82, ω = 1.55

Increasing electrophilicity (...)

 $pEC3 = 4.04, \omega = 3.90$

pEC3 = 1.25, ω = 1.61 pEC3 = 1.64, ω = 2.10

Quantitative Read-Across Predictions

Quantitative Read-Across Predictions

 β -phenyl cinnamic aldehyde:

ω = **2.04**, EC3 = 2.5, pEC3 = 1.92

Cinnamic aldehyde: $\omega = 2.10$ Pred. pEC3 = 1.93 (1.64) Pred. EC3 = 1.54 (3.00) MPT:

ω = **3.21**, EC3 = 1.4, pEC3 = 2.17

Quantitative Read-Across Predictions

5,5-dimethyl-3-methylenedihydro-2(3H)-furanone:

ω = 1.49, EC3 = 1.8, pEC3 = 1.85

Ethyl acrylate:

ω = 1.49
Pred. pEC3 = 1.40 (0.55)
Pred. EC3 = 4.13 (28.0)

Ethylene glycol dimethacrylate: $\omega = 1.51$, EC3 = 28.0, pEC3 = 0.85

5,5-Dimethyl-3-methylene-dihydro-2(3H)furanone and ethyl acrylate

pEC3 = 1.85 (EC3 = 1.8), ω = 1.49

Ring strain release = entropy gain

Conclusions

 Chemistry driven categories provide a strong basis for toxicity prediction

 Mechanistic read across provides good predictions for the toxicity of chemicals where electrophilic reactivity dominates

 The electrophilic index (ω) is able to model electrophilic reactivity within these categories

Developmental Toxicity

Similarity Category Formation

- 290 chemicals mainly drugs
- 57 query and 233 database chemicals
- Teratogenicity activity taken from FDA classes
- 2D similarity using atom environment and fingerprint similarity methods used
- All freely available in the Toxmatch software

- A: Control studies in women indicate no risk
- B: Control studies in animals indicate no risk
- C: Either animal studies indicate risk or there are no controlled animal or human studies
- D: Positive evidence of human risk
- X: Positive human and animal risk

Ethynodiol diacetate

norethindrone (X)

Read-across prediction (atom environment similarity): D / X Actual classification: D

Read-across prediction (fingerprint similarity): **B** Actual classification: **B**

Ricinoleic acid

Read-across prediction (fingerprint similarity): X Actual classification: B

Conclusions

 Multiple 2D similarity methods used to develop categories containing structural analogues

• Expert judgement is required

 Qualitative read-across gives good predictions within categories

Local Model Conclusions

 SMARTS based rules allow protein reactive chemicals to be assigned to mechanistic categories

 2D similarity methods can identify analogues enabling category formation

 Read-across can provide transparent predictions within these categories