

Mario Negri Institute, Milan, Italy - March 10-11, 2009

Qasim Chaudhry

Central Science Laboratory, UK

The CAESAR Model for Skin Sensitization

Skin Sensitization

- Skin sensitization is the term used to refer to a human risk called Allergic Contact Dermatitis (ACD) that can be caused by skin contact with a wide range of chemicals.
- Experimental tests (in vivo):
 - OECD 429 The Local Lymph Node Assay (LLNA)
 - OECD 406 The Magnusson Kligman Guinea Pig Maximisation Test (GPMT)
 - OECD 406 Buehler test
- Cost in the range of 30,000 euros/ compound

Skin Sensitization: Dataset

- Extracted from Gerberick et al. (2005)
- Tests carried out according to official guidelines (LLNA assay)
- 211 compounds with EC3 values and activity classes (binary and 5 classes)
- Data toxicity and structures quality check remaining 209 compounds
 - Checking Names, structures, CAS etc by online databases:
 ChemFinder (http://chemfinder.cambridgesoft.com),
 ChemIDPlus (http://chem.sis.nlm.nih.gov/chemidplus/);
 - Searching duplicate chemicals and isomers;
 - Removing ions and neutralizing molecules;
 - Cross-checking by at least 2 different partners.

CAESAR Modeling for Skin Sensitization

Descriptors

2D desc.: DRAGON, CODESSA,
 ACD, PALLAS, MDL

Individual classification models

- AFP (Adaptive Fuzzy Partition)
- MLP (MultiLayer Perceptron)
- GMDH (Self-organising networks of active Neurons based on the Group Method of data Handling)
- Combined classification models (GMDH)
- Mechanisms of action (read across approach)

EC3 (%)	LLNA Class	Binary class	Total compounds
NC	NC	Non sensitizers	42
≥10	Weak	Non sensitizers	66
1-10	Moderate		68
0.1-1	Strong	Sensitizers	21
< 0.1	Extreme		12
			209

Classification Ranges

EC3 (%)	Official LLNA Class			LLNA Binar	y class
NC	Class1	NC	42	Class1	108
≥ 10	Class2	Weak	' 66	Non sensitizers	100
≥ 1	Class3	Moderate	68	Class2	
≥ 0.1	Class4	Strong	21	Sensitizers	101
< 0.1	Class5	Extreme	12	Schsilizers	

ECETOC

Weak sensitizers in the non sensitizers class

EC3 (%)	Official LLNA Class			Binary c	lass
NC	Class1	(NC)	42	Class1 Non sensitizers	42
≥ 10	Class2	Weak	66		
≥1	Class3	Moderate \	68	Class2	167
≥ 0.1	Class4	Strong	21	Sensitizers	107
< 0.1	Class5	Extreme	12		

CAESAR ranges

Classification Models – ECETOC Ranges

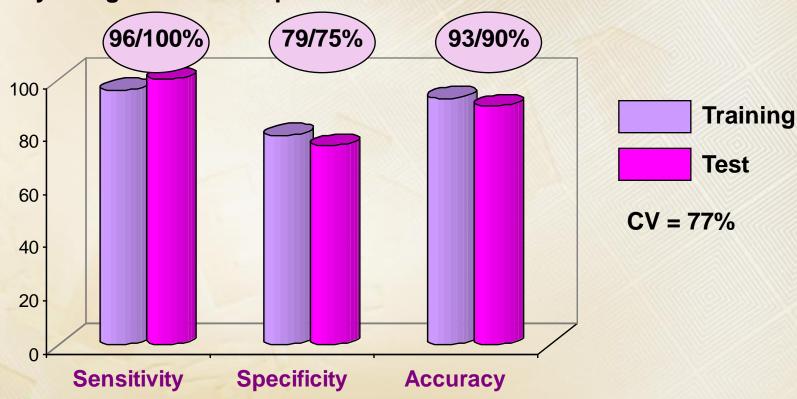
ECETOC ranges: Non Sensitizers (NC/weak)

Sensitizers (moderate/strong/extreme)

		Training set		Test set			
Modelling method	Nb of des.	Acc.	Sen.	Spe.	Acc.	Sen.	Spe.
MLP-NN	7	84	80	87	71	76	67
Combined model (7 models)	74	91	100	83	83	100	67

WORKSHOP ON OSAR MODELS

Satisfactory results with MLP method: accuracy (test)= 71%
Combined Model improves performances: sensitivity= 100%


Classification Models – CAESAR Ranges

CAESAR ranges: Non Sensitizers (NC)

Sensitizers (weak/moderate/strong/extreme)

AFP model by using 8 DRA descriptors

WORKSHOP ON

QSAR MODELS

FOR REACH

Mario Regri Institute, Milan, Haly - March 10-11, 2009

Better results by using CAESAR ranges

The sensitizers compounds are the best predicted ones

AFP Model - Descriptors

The AFP model uses 8 DRAGON descriptors: (nN; GNar; MDDD; X2v; EEig10r; GGI8; nCconj; O-058)

Name_descr	Definition		
nN	Number of Nitrogen atoms		
GNar	Narumi geometric topological index		
MDDD	Mean distance degree deviation		
X2v	valence connectivity index chi-2		
EEig10r	Eigenvalue 10 from edge adj. matrix weighted by		
	resonance integrals		
GGI8	topological charge index of order 8		
nCconj	number of non-aromatic conjugated C(sp2)		
O-058	=O (atom-centred fragments)		

AFP Model Performance Evaluation

Validation statistics derived from the AFP model

	Training	Test
Accuracy	93	90
Cross-validation	77	
Nb unpredicted compounds	0	2
Outliers False Positive	7 outliers 21 ; 54 ; 105 ; 188 ; 189 ;123 ; 145	2 outliers 112 ; 167
False Positive Rate	21	25
Outliers False Negative	5 outliers 84; 31; 90; 136; 185	NO
False Negative Rate	4	0
Postive Predictive Value (precision)	95	94
Negative Predictive Value	84	100
Sensitivity (class S)	96	100
Specificity (class NC)	79	75
F-measure	96	97

Outlier Compounds

ID	FP	FP	FN
	train	test	train
21			
54			
105	H ₃ C CH ₃		
188	S N		
189			
123	H ₂ C OH CH ₃		
145	H,C~°,2°,2°,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
112		H ₃ C OH CH ₃	
167		н,с О О О Н	
84			H ₃ C S—СН ₃
31			Br CH ₃
90			H ₂ N NH ₂
136			°CH ₃
185			но—С

QSAR MODELS FOR REACH

Conclusions

- New integrated models for skin sensitization have been developed.
- The models have been statistically evaluated using strict criteria.
- The final model will be implemented in the CAESAR applet.
- Focus on REACH:
 - Experimental data according to guidelines
 - Quality check (chemical structures)
 - Reproducibility
 - Transparency
 - False negatives minimized

