

Coupling carcinogenicity with mutagenicity models to improve its predictive power

Rodolfo Gonella Diazaª, Chiara Porcelliª, Alessandra Roncaglioniª, Nadège Piclin^b, Marco Pintore^b,Jacques Chrètien^b,Emilio Benfenati^a

> ^a Istituto di Ricerche Famacologiche Mario Negri, Milan, Italy ^b BioChemics Consulting SAS, Olivet, France

Aim & Scope

- Often mutagenicity and carcinogenicity endpoints are addressed together although this implies confounding factors in dealing with epigenetic carcinogens.
- The aim of this investigation was to elaborate an architecture for model combination to better address non-genotoxic carcinogens.

METHODS: TWO LAYER CLASSIFIER

Tox data: DSSTox CPDBAS¹ (Ames Mutagenicity data + Carcinoganicity TD50 on rat), merged with **Bursi dataset**² (Ames Mutaganicity); Ntot = 806 The dataset was split into training and test set on a chemical similarity basis.

Molecular descriptors: DRAGON (*v5.4*) 2D descr. (n = 790) + **Bursi Fragments** (n = 27)

Modelling methods: Classification trees under **MATLAB** (v7.0), fuzzy classification approach with in house software (**Adaptive Fuzzy Partition**)

First step: classification model for mutagenicity. All mutagens are also classified as carcinogen.

Second step: classification models based on carcinogenicity. In this step only nonmutagen compounds have been considered (nm/nc + *epigenetics*). See Figure 1 for details.

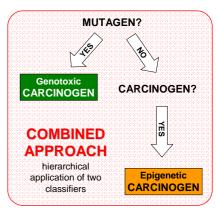


Fig. 1: Representation of the two-classifier combined approach

First Step: MUTAGENICITY CLASSIFIER

Bursi Fragments: performances for the assignment

M1	Acc.	Sens.	Spec.	M3	Acc.	Sens.	Spec.	Model info
Training set (437)	0.76	0.81	0.70	Training set (437)	0.85	0.82	0.88	18 descr.
Test set (106)	0.71	0.73	0.68	Test set (106)	0.74	0.63	0.89	19 terminal nodes
	Performand	ces on mutagei	nicity			Performan	ices on mutag	enicity
M2	Acc.	Sens.	Spec.	M4	Acc.	Sens.	Spec.	Model info
M2 Training set (645)	Acc. 0.64	Sens. 0.64	Spec. 0.63	M4 Training set (645)	Acc. 0.64	Sens. 0.58	Spec. 0.70	Model info 18 descr.

Second Step: CARCINOGENICITY CLASSIFIER

Classification Tree Results

M5	Acc.	Sens.	Spec.	Model info
Training set (208)	0.83	0.81	0.84	33 descr.
Test set (44)	0.59	0.47	0.67	39 terminal nodes

M6	Acc.	Sens.	Spec.	Model info
Training set (208)	0.75	0.83	0.70	7 DRAGON descr. AFP parameters: 25
Test set (44)	0.75	0.59	0.85	rules; p=1.05; q=0.75; occurrences=3; cuttings=8;

COMBINED MODEL

Performances of the model coupling M3 with M5 including externally predicted compounds

	Acc.	Sens.	Spec.
Training set (645)	0.57	0.77	0.36
Test set (161)	0.63	0.79	0.44

Conclusions & Future Perspectives

- Modelling firstly mutagenicity and then carcinogenicity allows to focus the attention to non genotoxic carcinogens but overall there is a lack in the overall accuracy.
- The most critical step is the second one (Carcinogenicity) and the hierarchical combination of models obtained so far caused a propagation of the errors.
- Further analysis will be conducted to enlarge and increase reliability of data available for non genotoxic carcinogens.
- A complementary study will be performed to explore the quantitative relationship accounting for carcinogenic potency of epigenetic carcinogens.

¹ DSSTox CPDBAS dataset: <u>http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html</u> ² Kazius J, McGuire R, Bursi R., 2005, Derivation and validation of toxicophores for mutagenicity prediction., *J Med Chem* 48(1), 312-20

Authors acknowledge financial support from EC for the CAESAR project. Contract nr. SSPI-022674.

Classification Tree Results

AFP Results