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Abstract in the context of EU legislation, such as REACH and the Cosmetics Directive (Counci

Directive 2003/15/EC), it is anticipated that (Q)SARs will be used more extensively, in the interests of time-
and cost-effectiveness and animal welfare.

A survey and analysis of QSARs models for carcinogens for cogeneric classes of chemicals has shown good
statistical performance (70-100%correct prediction). However such local models are limited in number by
lack of sufficient data. Therefore models for non congeneric chemicals have been developed in scope of
European Commission (EC) funded project CAESAR in accordance with principals of validation adopted by
Organization for Economic Cooperation and Development (OECD).

In silico models for prediction of the ability of chemicals to induce carcinogenicity in rodent using Counter
Propagation Artificial Neural Network (CP ANN) have been built and analysed. Statistical performance of
models have been discussed.

Data: The analyzed dataset consist of 805 chemicals extracted from Carcinogenic Potency Database

(CPDBAS). Original data table with 1481chemicals has been taken from Distributed Structure-
Searchable Toxicity (DSSTox) Public Database Network
http://www.epa.gov/ncct/dsstox/sdf cpdbas.html. The molecular structure were represented as
MDLmolfiles. The molecular structure information was obtained as topological structure descriptors, including
atom-type and group-type E-state and hydrogen E-state indices, molecular connectivity, chi indices,
topological polarity, and counts of molecular features. The MDL QSAR software computed all these
‘ iptors.

Descriptors selection and minimization
Initial dataset contained 254 MDL descriptors for 805 chemicals
(644molecules in training set and 161 molecules in test set)

Stepl: 94MDL descriptors selection using Kohonen map.

Step2: 86 MDL descriptors selection eliminating zero and

constant values.
Step3: 27MDLdescriptors selection using Principle Component

Analysis (PCA).

Kohonen map: Kohonen neural network of dimension

/X7 was applied, which enables one to map objects into 49
positions. Similar objects were mapped into the same position (X,y
coordinate of the Kohonen map). Kohonen network was trained

until a limiting error is reached. 1-2 descriptors from each neurons

were chosen on the basis of smallest and largest distance
between the neuron and descriptorsvector.

Fragment of Kohonen map 4X4 is presented in the Table2.
Table2. Fragment of Kohonen

Table3. Principle

Cmponent Analysis.

map 4X4 with selected descriptors.
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Not safisfied results for quantitative models carcinogenicity potency.
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