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One can see from Table 1 and Figure 1 that:

i)    better results for both schemes take place if the limS=2; 

ii) the model that involves cycles codes gives better
prediction for the carcinogenicity of external test set.

Carcinogenicity is an important endpoint for REACH, and typically for this endpoint many animals are used. Some in silico models exist,
which in most of the cases are aimed to classify chemicals as carcinogenic or not. REACH requires an evaluation of the risk in case of the use of
carcinogenic compounds, considering the exposure levels. For this, QSAR models, predicting a potency level, and not classifiers, may play a
role. We developed QSAR models based on SMILES. Simplified molecular input line entry system (SMILES) has been used as elucidation of
the molecular structure for quantitative structure – activity relationships which are aimed to predict carcinogenicity of large dataset that
contains wide variety of organic compounds. Using the Monte Carlo method we constructed optimal descriptors, which are a mathematical
function of composition of the SMILES elements together with special codes of cycles present in molecules. The codes of cycles are reflected a
presence of: cycles with sizes 5 and 6, cycles with hetero-atoms and condensed cycles.

Two versions of the SMILES-based optimal descriptors have been studied:

1. without cycle codes

DCW(limS) =                    CW(dC) + Σ CW(SAk)                       (1)

2. with cycle codes

DCW(limS) = CW(CC) + CW(dC) + Σ CW(SAk)                      (2)

where SAk are the SMILES attributes constructed with three consequent SMILES
elements (i.e., one symbol, or two symbols which can not be examined separately , e.g.,
‘Cl’, ‘Br’; dC is difference of number of carbon atoms in sp2 state minus number of carbon
atoms in sp3 state; CC is the cycle code for a given SMILES. CW(x) is the correlation
weight for x (x is a SMILES attribute).
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Optimal descriptors calculated with simplified molecular input line entry system
(SMILES) have been used for quantitative structure – property/activity
relationships (QSPR/QSAR) [1-3]. In case of the optimal descriptors calculated with
molecular graph (hydrogen filled) statistical characteristics of the models becomes
better if their calculating includes information on cycles. Similar approach based on
the SMILES-based optimal descriptors has indicated that statistical characteristics
of the QSAR for carcinogenicity are also preferable (Table 1). Technique of blocking
of rare SMILES attributes has been used. The discrimination of the SMILES
attributes into rare and not rare was carried out with a special threshold limS. LimS
is the minimal number of a SMILES attribute in the training set. If less than limS
SMILES contain the attribute SAk*, than CW(SAk*)=0.0, i.e., the SAk* has no
influence to the model.

Figure 1
Statistical quality of the models for the training (red line),
calibration (blue line), and test (green line): the cases of the
Monte Carlo optimization with Eq. 1 and 2 obtained on range
of the limS of 0-5.

Cycle codes have been defined as the following 
&(5-member cycles number)(6-member cycles number)(heteroatoms number)

The compound in Figure 2 can be represented by the SMILES: 
O=C2Oc1c4C5C=COC5Oc4cc(OC)c1C=3CCC(O)C2=3

The cycle code for the compound is &321
Rings have been calculated with the algorithm from Ref. 4. We decided to extract the
adjacency matrix from the SMILES code and determine the total number of cycles, and
their characteristics, present within every molecule. Cycles are classified in size, number
of occurrences and heteroatomic content, classification that will be expressed ultimately
in the cyclicity invariant code. Results from Table 1 and Figure 1 show good prediction on
the test set.
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Table 1
Statistical characteristics of the Models, for different limN and two versions of the descriptors.

Models obtained WITHOUT Cycle codes Models obtained WITH Cycle codes

Figure 2
Example of a compound of view
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Training set, n=170 Calibration set, n=170 Test set, n=61
imNI Nact Probe r2 s F r2 s F r2 s F

0 593 1 0.8168 0.607 749 0.8133 0.622 732 0.5259 0.971 65

0 593 2 0.8211 0.600 771 0.8149 0.617 740 0.5386 0.968 69

0 593 3 0.8162 0.608 746 0.8156 0.625 743 0.4969 1.026 58

0 0.8180 0.605 755 0.8146 0.622 738 0.5205 0.988 64

1 469 1 0.8197 0.602 764 0.8176 0.630 753 0.5577 0.988 74

1 469 2 0.8173 0.606 751 0.8132 0.635 732 0.5960 0.901 87

1 469 3 0.8193 0.603 762 0.8147 0.645 738 0.6088 0.891 92

1 0.8188 0.603 759 0.8152 0.636 741 0.5875 0.927 84

2 311 1 0.7643 0.688 545 0.7557 0.699 520 0.6847 0.760 128

2 311 2 0.7648 0.687 546 0.7651 0.686 547 0.6932 0.784 133

2 311 3 0.7678 0.683 556 0.7614 0.691 536 0.6938 0.773 134

2 0.7656 0.686 549 0.7608 0.692 534 0.6906 0.772 132

3 240 1 0.7120 0.761 415 0.7111 0.764 414 0.6579 0.790 113

3 240 2 0.7105 0.763 412 0.7093 0.766 410 0.6917 0.736 132

3 240 3 0.7093 0.764 410 0.7090 0.770 409 0.6674 0.758 118

3 0.7106 0.763 413 0.7098 0.767 411 0.6723 0.761 121

4 205 1 0.6628 0.823 330 0.6678 0.815 338 0.7377 0.641 166

4 205 2 0.6669 0.818 336 0.6691 0.813 340 0.7083 0.673 143

4 205 3 0.6677 0.817 338 0.6681 0.817 338 0.7227 0.657 154

4 0.6658 0.819 335 0.6683 0.815 339 0.7229 0.657 154

5 176 1 0.6358 0.855 293 0.6407 0.851 300 0.6775 0.725 124

5 176 2 0.6337 0.858 291 0.6349 0.857 292 0.6812 0.721 126

5 176 3 0.6253 0.868 280 0.6296 0.863 286 0.6795 0.713 125

5 0.6316 0.860 288 0.6351 0.857 292 0.6794 0.720 125

Training set, n=170 Calibration set, n=170 Test set, n=61
imNI Nact Probe r2 s F r2 s F r2 s F

0 593 1 0.8198 0.602 764 0.8195 0.603 763 0.6050 0.848 90

0 593 2 0.8251 0.593 793 0.8209 0.606 770 0.6069 0.860 91

0 593 3 0.8245 0.594 789 0.8216 0.610 774 0.6212 0.809 97

0 0.8231 0.596 782 0.8207 0.606 769 0.6110 0.839 93

1 469 1 0.8240 0.595 787 0.8196 0.637 763 0.6504 0.818 110

1 469 2 0.8230 0.596 781 0.8208 0.636 770 0.6531 0.825 111

1 469 3 0.8226 0.597 779 0.8210 0.625 771 0.6152 0.884 94

1 0.8232 0.596 782 0.8205 0.633 768 0.6395 0.842 105

2 311 1 0.7699 0.680 562 0.7591 0.696 529 0.7615 0.656 188

2 311 2 0.7682 0.682 557 0.7646 0.686 546 0.7492 0.671 176

2 311 3 0.7647 0.688 546 0.7630 0.692 541 0.7577 0.668 185

2 0.7676 0.683 555 0.7622 0.692 539 0.7561 0.665 183

3 240 1 0.7123 0.760 416 0.7140 0.758 419 0.7145 0.699 148

3 240 2 0.7199 0.750 432 0.7199 0.754 432 0.7259 0.683 156

3 240 3 0.7129 0.760 417 0.7132 0.759 418 0.7179 0.677 150

3 0.7150 0.757 422 0.7157 0.757 423 0.7194 0.686 151

4 205 1 0.6734 0.810 346 0.6784 0.806 354 0.7370 0.635 165

4 205 2 0.6731 0.810 346 0.6762 0.807 351 0.7174 0.658 150

4 205 3 0.6621 0.824 329 0.6834 0.802 363 0.7301 0.644 160

4 0.6695 0.815 341 0.6793 0.805 356 0.7282 0.646 158

5 176 1 0.6466 0.843 307 0.6516 0.838 314 0.6019 0.806 89

5 176 2 0.6402 0.850 299 0.6601 0.831 326 0.6328 0.765 102

5 176 3 0.6379 0.853 296 0.6471 0.844 308 0.6491 0.744 109

5 0.6415 0.849 301 0.6529 0.838 316 0.6279 0.772 100


