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INTRODUCTION

The efforts of new legislations such as REACH are aimed to reduce the impact on human health and the environment of chemicals and to promote risk assessment analysis for the evaluation of the
health status of the environment. Due to the present lack of data about chemicals in Europe and to the limitations of assays, REACH supports a full use of all type of data (in vivo, in vitro, in silico).
REACH promotes innovation (with the enhancement of non-testing methods), in order to cover as much as possible the knowledge gap that currently exists in the assessment of the safety of

chemicals and to avoid repetition in terms of test and animal use.

It now becomes necessary to assess how heterogeneous data can be managed within a unified approach, suitable for the risk characterisation of the chemicals.

Uncertainty is a typical characteristic of all data, of any nature. This refers to all values for the exposure and effect related risk assessment. Risk refinement tool, as developed by Verdonck at al., are
useful to reduce the uncertainty related to the conservatism of worst-case assumptions, and the uncertainty of using assessment factors. This requires defining and modulating the uncertainty when

data comes from one or more sources, as experimental, in vitro and in silico.

OECD and ECHA recently produced guidelines addressing the issue of reliability and uncertainty for exposure models, for in silico models and also for in vivo studies?3. Internal organization, such
as ECVAM in Europe, are devoted to assess the validity of alternative methods; at present most of the evaluation of the data uncertainty has been done for the in vitro studies. Most QSAR studies
have produced models described in their fitness properties; more recently the in silico methods have been studied as tools to predict toxicity properties of chemical compounds for regulatory
purposes, and some example appeared for instance for the specific use within the EC regulation for pesticides®.

MATERIALS & METHODS

CAESAR EU project databases and models® for Bioconcentration factor (BCF), a
quantitative model, and Mutagenicity, a qualitative model, are considered as
examples.

BCF: The uncertainty of in vivo studies is about 0.5 in log units®. The standard
deviation error in prediction for the predicted values of in silico methods is about
0.5-0.6 in log units; these values refer to the results of the CAESAR model on a set of
compounds not used to build up the model, and somehow higher values have been
obtained using the EPI Suite’ model, but in this case the values may also include
calculated values for chemicals which were present on the training set. See fig. 1.

Mutagenicity: the experimental reproducibility is about 85%, when the same
experiment is carried out by different laboratories®?. Within the project CAESAR the
accuracy of the prediction was about 85%, on the basis of a large data set (more
than 800 chemicals).

A possible way to assess the relevance of a method and conduct a comparison
among methods is to consider their uncertainty, checked on the basis of specific
tests. The uncertainty relative to the alternative method should be compared for the
specific uncertainty of the experimental method. This gives a realistic expectation of
the possibility to use a certain value, for the specific endpoint. The weight of the
relevance of a method in the use for the final risk characterization may be expressed
in relation to its uncertainty (fig. 1 and 2).

The above refers to the comparison of the performance of the models and methods,
on the average, for a set of compounds. However, this general approach can be
modulated on the basis of specific compounds. Indeed, uncertainty can be easily
assessed at the level of chemical groups, or of individual compounds.

For instance, within CAESAR we measured a higher uncertainty for chemicals with
some fragments and we introduced warnings in the predictions obtained with the
CAESAR models, thus making possible to have a more precise evaluation of the

uncertainty for a single compound, besides the evaluation of the general accuracy of
the model (fig. 3).

Furthermore, at the individual level, the potential error can be evaluated with the
similarity tool which is implemented in the CAESAR models (fig. 4).

These examples highlight a particular positive aspect of in-silico models, as they can
give a precise measurement of the uncertainty associated with the prediction, thus
allowing the regulator to have an explicit evaluation of the quality of data.

DISCUSSION & CONCLUSIONS

Advantages of the uncertainty comparison among methods:

Different methods can be easily compared.

A clear, objective procedure is defined which can be applied unambiguously.

« The scientific basis relies on fundamental criteria for scientific measurements,

which have been incorporated into official guidelines for the evaluation of

alternative methods, both for in vitro and in silico methods'O.
*  Weighing factors of different methods is not fixed on the basis of subjective
opinions based on performance of previous models; they may evolve with time as

a result of new improved models.

* The approach may be also suitable to manage data from exposure models.
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Figure 1

For continuous values (BCF endpoint) three
methods are compared in their performances
relatively to the measured uncertainty: A (in vivo
model), B (in silico EPI Suite model), C (in silico
CAESAR model). If the uncertainty is similar the
methods are similar (see Materials & Methods).
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Figure 2

For categorical methods (Mutagenicity endpoint)
the reproducibility as concordance is compared:
A (in vitro test), B (in silico CAESAR model). If
these values are similar, the two methods are
similar. If one of the method is an in-silico model,
its accuracy can be used to be compared with the
concordance of the others.

Figure 3

[Cl}/C2=C/C1=CC=CC=C1C...

MOLECULEID 1
SMILES [CI]/C2=C/C1=CC=CC=C1C=C20-0C
PREDICTED VALUE BCF = 76 (L/kg)

Log BCF = 1.88
REMARKS Presence of chemical features in the compound

(Peroxide) that might he associated with a lower
reliability of the predicted value.

SIMILAR MOLECULES

Similar strucutures present in the CAESAR dataset

MOLECULE ID 280 . MOLECULE ID 132

The result window of CAESAR model
for BCF shows at the top all molecules
submitted (as SMILES) with the
predicted property value(s).

The presence of eventual remark for
critical compounds is indicated, giving
the wuser a warning about the
uncertainty of the prediction on the
selected compound.
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Figure 4
In addition to the prediction of the

S  Oclc(cc(c2clccec2

SMILES COclcccc2clccec2
PREDICTED VALUE Log BCF = 1.58 PREDICTED VALUE Log BCF = 2.20 endeint property, the server
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MOLECULE ID 160 MOLECULE ID 20

SMILES OCE=0)Cclc2c(cc..

e o The experimental and predicted values
EXPERIMENTAL VALUE Log BCF = 0.47 EXPERIMENTAL VALUE Log BCF = 2.41 are shown, allowing measurements of
SIMILARITY | 0.958 SIMILARIEY 0.951 the error for related compounds.

References

SMILES Cclccc2e(cl)cccc2

EXPERIMENTAL VALUE Log BCF = 2.21 EXPERIMENTAL VALUE Log BCF = 1.35 automatical |y retrieves the most similar

SIMILARITY 0.969 SIMILARITY 0.962

molecules to the molecule submitted,
found in the whole dataset used for
the model building and testing.

1. F. A. M. Verdonck, P. A. Van Sprang, P. A. Vanrollenghem. An intelligent data collection tool for chemical safety/risk assessment.

Chemosphere, 70, 1818-1826.

3. Guidance on information requirements and chemical safety assessment, Part B: Hazard Assessment, updated October 2008, R19, updated

May 2008.

4. E.BenfenatiE. (Ed.), 2007. Quantitative Structure-Activity Relationship (QSAR) for Pesticide Regulatory Purposes. Amsterdam: Elsevier.

5. http://www.caesar-project.eu/software/index.htm

6. C. Zhao, E. Boriani, A. Chana, A. Roncaglioni, E. Benfenati, 2008. A New Hybrid QSAR Model for Predicting Bioconcentration Factor (BCF).

Chemosphere, 73, 1701-1707.

7. Estimation Programme Interface (EPI) Suite. US EPA. http://www.epa.gov/opptintr/exposure/pubs/episuite.html

8. E. Benfenati, R. Benigni, D. M. DeMarini, C. Helma, D. Kirkland, T. M. Martin, P. Mazzatorta, G. Ouédraogo-Arras, A. M. Richard, B. Schilter, W.
G. E. J. Schoonen, R. D. Snyder, C. Yang. Predictive models for carcinogenicity and mutagenicity: frameworks, state-of-the-art, and
perspectives. Journal of Environmental Science and Health Part C, 27: 57-90, 20009.

9. J.Kazius, R. McGuire R, R. Bursi, 2005. Derivation and validation of toxicophores for mutagenicity prediction. L. Med. Chem 48 (1), 312-20.

10. A. Fernandez, R. Rallo, F. Giralt. 2009. Uncertainty Reduction in Environmental Data with Conflicting Information. Environmental Science &

Technology. In press



